LUNG CANCER: 2006 update

Rodolfo E. Bordoni, MD
Chairman, Research & Therapeutics,
Leader, Lung Cancer Program,
Georgia Cancer Specialists;
Chairman, Professional Education,
Georgia Cancer Foundation;
Chairman, Department of Medicine,
WellStar Kennestone Hospital.

Cancer Death Rates in the U.S. 1930-2000

Lung Cancer in the U.S. in 2005: Incidence and Mortality

- New cases: 172,570
 93,010 males #2
 79,560 females #2

- Annual deaths: 163,510
 90,490 males #1
 73,020 females #1

- Risk for developing lung cancer
 1:13 males
 1:18 females

- 5-year survival rate (all stages): 15%

Frequent Symptoms of Lung Cancer

- Fatigue
- Cough ± hemoptysis
- Dyspnea
- Decreased appetite
- Weight loss
- Pain

Lung Cancer Histology

- Non-small cell (NSCLC)
 Squamous-cell (1)
 Adenocarcinoma (1)
 BAC (1)
 Large-cell
 Other (NOS)

- Small-cell (SCLC)
 Decreasing incidence
 Now <15% of all lung cancers

LUNG CANCER: risk factors

- Tobacco……….85%
- Second hand smoking
- Radon gas
- Asbestos……….3-4%
- Inflammation/scarring
- Family history
- Other carcinogens (ether, polycyclic aromatic hydrocarbons, chromium, nickel, organic arsenics
TNM* Staging of NSCLC

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIA</td>
<td>T1</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>IIB</td>
<td>T2</td>
<td>N1</td>
<td>M0</td>
</tr>
</tbody>
</table>

*T = primary tumor; N = nodal involvement; M = distant metastasis

IASLC staging system project:

1997 Lung Cancer Staging System:
1. T3 N0 M0 belongs to Stage IIIB (instead of IIIA)
2. Malignant pericardial effusion added to T4
3. Satellite tumors within same lobe added to T4
4. Ipsilateral distant metastasis classified as M1

5-year Survival by clinical stage:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>72.1%</td>
</tr>
<tr>
<td>IB</td>
<td>49.9%</td>
</tr>
<tr>
<td>IIA</td>
<td>48.7%</td>
</tr>
<tr>
<td>IIIA</td>
<td>40.6%</td>
</tr>
<tr>
<td>IIIB</td>
<td>35.8%</td>
</tr>
<tr>
<td>IV</td>
<td>28.0%</td>
</tr>
</tbody>
</table>

Based on these, the new staging system most likely will merge current TNM stages and will create new sub-stages based on a large worldwide database.

LUNG CANCER:

prognostic factors

Good prognostic factors:
- Early stage
- Good PS
- No weight loss (<5%)
- Female gender

Poor biologic prognostic factors:
- p53 mutation
- K-ras oncogene activation

Neutral prognostic factors:
- Age
- Pathology
- Histology (BAC TTF-1+/CK20+/CK7+) (TTF-1+/*CK7+/CK20+)

EGFR:
EGFR MUTATION:
NEJM, 2004; 350:2129 *Lynch T et al.*

- Of 275 pts treated with gefitinib, 25 reached PR.
- 9:25 PR pts. (all AdenoCa & BAC), with a MS > 18m, were evaluated for EGFR gene mutations in the entire gene coding region.

<table>
<thead>
<tr>
<th>Responders</th>
<th>Non-Responders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer Tissue</td>
<td>Normal Tissue</td>
</tr>
<tr>
<td>Mutation</td>
<td>P<0.001</td>
</tr>
<tr>
<td>8:9 (88.9%)</td>
<td>0:7</td>
</tr>
</tbody>
</table>

Best response: women, non-smokers, BAC histology: 50%!!

Mutations were, heterozygous, somatic, either small, in frame deletions or amino acid substitution clustered around the ATP-binding pocket of the TK domain, and located in exons 19 and 21.

EGFR MUTATION-I (cont’d):
NEJM, 2004; 350:2129 *Lynch T et al.*

Conclusions:
- Screening for specific EGFR mutations may identify sensitive patients to gefitinib.
- Structural analysis of the mutant receptors may help understand the mechanism of EGFR activation and help the design of more specific inhibitors of the mutant receptors.

DNA repair genes:

PROGNOSTIC FACTORS IN LUNG CANCER: ERCC1 & RRM1

ASCO ’03, Abs # 2590. *R Rosell et al.*

ERCC1 (DNA repair) & RRM1 expression predicts response to platinum and OS in advanced disease.

81 pts, Stage-IIIB “wet” or –IV, Rx’d with Cis/Gem

<table>
<thead>
<tr>
<th>TTP</th>
<th>MS</th>
<th>Ideal Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low ERCC1</td>
<td>8.3mo</td>
<td>13.7mo</td>
</tr>
<tr>
<td>High ERCC1</td>
<td>5.1</td>
<td>3.6</td>
</tr>
<tr>
<td>Low RRM1</td>
<td>8.3</td>
<td>N/R</td>
</tr>
<tr>
<td>High RRM1</td>
<td>2.7</td>
<td>6.8</td>
</tr>
</tbody>
</table>

192 pts. available for analysis

Design:

- A – Control-Cis/Docetaxel
- B1 – low ERCC1 Cis/Docetaxel
- B2 – high ERCC1 Gem/Docetaxel
- Resistance to cisplatin

ERCC1 mRNA-based, Ph-III-r trial in Stage-IV NSCLC:

ASCO 2005, Abstract #7002; Rosell R et al.
ERCC1 mRNA-based, Ph-III-r trial in Stage-IV NSCLC:

<table>
<thead>
<tr>
<th>ERCC1</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-Low</td>
<td>47.3%</td>
<td>56.6%</td>
</tr>
<tr>
<td>A1-Low</td>
<td>40.4%</td>
<td>37.7%</td>
</tr>
<tr>
<td>B2-High</td>
<td>21.2%</td>
<td>26.1%</td>
</tr>
</tbody>
</table>

ERCC1 mRNA-based, Ph-III-r trial in Stage-IV NSCLC:

Conclusions:
1. **Low ERCC1 expressers**: better than average response to Platinum-based therapy (doc/cis) \([56.6\%]\).
2. **High ERCC1 expressers**: trend to better response to a non-Platinum regimen (doc/gem).
 \([\text{ORR } 37.7\% \text{ vs. } 26.1\%; \text{MS } 9.5\text{ mo. vs. } 8.0\text{ mo.}]\)

SMOKING CESSATION:

Chantix® (*varenicline tartrate*) daily for 12 weeks + 12 extra weeks for pts who quit smoking to increase likelihood of long-term smoking cessation.

COMMENT: Chantix® (*Pfizer*) was approved by the FDA in 6/06 to help smokers stop smoking (eases withdrawal symptoms and blocks nicotine effects if pts resume smoking) based on six clinical trials (3,659 pts, average 21 cigarettes/day x 25 years). Chantix was superior to placebo in all trials, and superior to Zyban (bupropion) in 2 placebo-controlled studies. Major adverse effects: N/V, HA, flatulence, insomnia, abnormal dreams, and dysgeusia (change in taste perception).

SCREENING:

Low dose spiral CT-scan in early diagnosis of LuCa:

Conclusions:
1. Effective in early diagnosis
2. Potential increase in cure rate
3. Very low rate of procedures for benign dz.

National Lung Screening Trial (NLST)

American College of Radiology Imaging Network [ACRIN]
Spiral CT-scan vs. CXR
http://www.cancer.gov/nlst
CHEMOPREVENTION:
SWOG E5597 (NCCN 2006)

Design: double blind, placebo controlled study of selenium yeast, 1 tablet/day x 4 years vs. placebo, 1 tablet in AM x 4 years.

Eligibility:
1. Totally resected Staged IA (pT1N0)
2. Free of disease.
3. 6 - 36 months from date of surgical resection
4. No prior or current chemo or radiation therapy
5. ECOG PS 0-1

Journal of the National Comprehensive Cancer Network, July 2006

NSCLC: Therapeutic Options by Stage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Treatment Options</th>
<th>5-Year Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>Surgery</td>
<td>>70%</td>
</tr>
<tr>
<td>IB</td>
<td>Surgery + Adjuvant CT</td>
<td>60%</td>
</tr>
<tr>
<td>IIA</td>
<td>Surgery + Adjuvant CT</td>
<td>50%</td>
</tr>
<tr>
<td>IIIB</td>
<td>Surgery + Adjuvant CT</td>
<td>40-60%</td>
</tr>
<tr>
<td>IIIA (N2-) IIIA (N2-)</td>
<td>Surgery + Adjuvant CT</td>
<td>25-40%</td>
</tr>
<tr>
<td></td>
<td>CT + XRT + Surgery</td>
<td>10-30%</td>
</tr>
</tbody>
</table>

NSCLC: Therapeutic Options by Stage

Case #1:
MW- initial visit: 11/10/05

62 y/o WF, with recurrent RUL pneumonias between July and October, 2005. Repeat CXR after ATBx therapy showed R hilar mass. Chest CT-scan showed a 4.58 x 4.23 cm RUL pulmonary mass with possible direct extension to the medial pleura, possible R paratracheal and pre-carinal LN's, a 2.5 x 1.6 cm L adrenal lesion, and a L1 lytic lesion. Transbronchial Bx of the RUL mass showed large cell undifferentiated carcinoma of the lung. Bx of the L1 lesion was reported as benign.

Case #1:

A whole body PET-scan showed the adrenal mass and the possible bony lesions NOT to be hypermetabolic. Clinical (c)stage IIIA (T2N2M0).

Therapeutic recommendation upon consultation to the Multidisciplinary Lung Cancer Clinic: *neo-adjuvant combined modality concurrent chemo-radiation therapy f/b re-evaluation with intent to resection*.

Patient was treated with two cycles of cisplatin (60 mg/m2) and etoposide (120 mg/m2/day x 3), every 3 weeks with concurrent XRT (50 Gy over 25 treatment fractions) to the tumor and adjacent positive adenopathies and areas of likely sub-clinical involvement.

Case #1:

On 4/4/06 the patient underwent a VATS RULobectomy with chest wall resection.

Interval re-evaluation was planned for after completion of chemoradiation. If the patient was not found a candidate for surgery, she was to continue XRT to a definitive dose up to 65 Gy and consolidation chemotherapy with two cycles of docetaxel 100 mg/m2 every 3 weeks.

Upon completion of chemoradiation, a chest CT-scan was done showing objective response as per table:

<table>
<thead>
<tr>
<th></th>
<th>10/31/05</th>
<th>2/14/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUL mass</td>
<td>4.58 x 4.23 cm</td>
<td>3.0 x 2.3 cm</td>
</tr>
<tr>
<td>L adrenal mass</td>
<td>2.5 x 1.6 cm</td>
<td>2.45 x 1.58 cm</td>
</tr>
</tbody>
</table>

Upon completion of chemoradiation, a chest CT-scan was done showing objective response as per table:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 nodes (station 10-14)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>N2 nodes (station 1-9)</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>N3 nodes</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Distant metastasis</td>
<td>Not examined</td>
<td></td>
</tr>
</tbody>
</table>
The second week in May the patient developed persistent HA’s and weakness. Brain MRI with contrast showed a **single R occipital mass c/w metastasis.** Upon consult with NS the mass was debulked and she received **30 Gy** in 12 treatment fractions to the whole brain, from 5/24 through 6/12/06, plus temozolomide (75mg/m2/day).

Case #1:

On 5/23/06 she was sent for a whole body CT/PET scan for restaging of the LuCa and due to progressive pain in the R paraspinal area, at T8-9 level.

A new, abnormal focal area of hypermetabolism was found along the paramedial aspect of the posterior R pleura at T9 level with SUV of 9.1. Bx proved this to be NSCLC, metastatic.

Case #1:

She received **35 Gy** delivered in 7 treatment fractions, using IMRT, from 6/21 through 6/29/06. On 7/25/06 a thoracic and lumbar spinal MRI was done due to progressive back pain. It showed metastatic disease to T10 with tumor extension into the neural foramina and chronic compression of L1.

Case #1:

On 7/27/06 the patient was seen last in the office with significant deterioration of her condition, confused and with 7-8:10 pain in the mid/low back, even on combined narcotic analgesia. At this point she and her family requested terminal care with Hospice at home.

NSCLC: Therapeutic Options by Stage (cont)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Treatment Options</th>
<th>5-Year Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIIB (N2-3)</td>
<td>CT/TRT ≥ CT</td>
<td><10%</td>
</tr>
<tr>
<td>IIIB T4N0</td>
<td>CT/TRT ≥ Surgery</td>
<td><5%</td>
</tr>
<tr>
<td>IIIB (with pleural effusion)</td>
<td>CT, MTT</td>
<td><2%</td>
</tr>
<tr>
<td>IV</td>
<td>CT, MTT Palliative Radiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symptom Management</td>
<td></td>
</tr>
</tbody>
</table>

EARLY STAGE

adjuvant therapy
TNM* Staging of NSCLC

<table>
<thead>
<tr>
<th>Stage IA</th>
<th>T1</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage IB</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIA</td>
<td>T1</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIB</td>
<td>T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
</tbody>
</table>

*T = primary tumor; N = nodal involvement; M = distant metastasis

TNM* Staging of NSCLC (cont)

<table>
<thead>
<tr>
<th>Stage IIA</th>
<th>T1-3</th>
<th>N2</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage IIIA</td>
<td></td>
<td>N1</td>
<td>M0</td>
</tr>
</tbody>
</table>

*A. On clinical trial, if available
B. High-risk patients (angiolymphatic invasion, high histologic grade, high nuclear grade)

Adjuvant chemotherapy for Stg IB NSCLC:

CALGB 9633:

Design: 13% OS impr./50% 5-y S.
Median F/U: 34mo

<table>
<thead>
<tr>
<th>344 pts</th>
<th>150 deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage IB</td>
<td>T2N0</td>
</tr>
<tr>
<td>Lobectomy 89%</td>
<td></td>
</tr>
<tr>
<td>Cb-6/Pacl-200 q 21 days x 4 cycles</td>
<td>71% 61%</td>
</tr>
<tr>
<td>Observation</td>
<td>59% 50%</td>
</tr>
<tr>
<td>pValue</td>
<td>0.028 0.035</td>
</tr>
</tbody>
</table>

GM Strauss et al., PASCO 2004

<table>
<thead>
<tr>
<th>2004</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>54 mo F/U</td>
<td>4-yS 5-yDFS OS 5-yS</td>
</tr>
<tr>
<td>4-yS</td>
<td>71% HR: 0.74 HR: 0.80 60%</td>
</tr>
<tr>
<td>5-yDFS</td>
<td>0.80</td>
</tr>
<tr>
<td>OS</td>
<td>0.10</td>
</tr>
</tbody>
</table>

GM Strauss et al., PASCO 2006, Abstr 7036
TNM* Staging of NSCLC

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>T1</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>IIB</td>
<td>T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
</tbody>
</table>

*T = primary tumor; N = nodal involvement; M = distant metastasis

ANITA:
JY Douillard et al., ASCO '05, Abstr #7013

- 840 pts.
- Stage IB/II/IIIA
- 7-yS
- Cis-50/Vin-25 q 28 days x 4 cycles, 45%
- Observation, 37%

<table>
<thead>
<tr>
<th>5-y S.</th>
<th>Stg-IB</th>
<th>Stg-II</th>
<th>Stg-III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>62%</td>
<td>52%</td>
<td>42%</td>
</tr>
<tr>
<td>Observation</td>
<td>63%</td>
<td>39%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Adjuvant chemotherapy in early stage NSCLC:
Consensus:
1. Chemotherapy of choice: cis-based (Vinorelbine, VP-16, Vinca alkaloids)
2. Patient eligibility: Stage II & III
3. Stage IB:
 a. On clinical trial, if available
 b. High-risk patients (angiolymphatic invasion, high histologic grade, high nuclear grade)
4. Age NOT a limiting factor

Adjuvant chemo in elderly patients:
JBR.10 (Cis/VNR)

<table>
<thead>
<tr>
<th>213 pts.</th>
<th><65</th>
<th>≥65</th>
<th>>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS HR</td>
<td>0.77 p=0.004</td>
<td>0.61 p=0.04</td>
<td>1.95 p=0.02</td>
</tr>
<tr>
<td>SqCellCa</td>
<td>32% p=0.01</td>
<td>49% p=0.001</td>
<td>--</td>
</tr>
<tr>
<td>PS 0-1</td>
<td>53% p=0.01</td>
<td>41% p=0.001</td>
<td>--</td>
</tr>
<tr>
<td>Dose Int.</td>
<td>13.2 p=0.004</td>
<td>9.9 p=0.004</td>
<td>--</td>
</tr>
<tr>
<td>2. Cis</td>
<td>18.0 p=0.001</td>
<td>14.1 p=0.001</td>
<td>--</td>
</tr>
<tr>
<td>Toxicity</td>
<td>SAME</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Genomics and prognosis of early NSCLC:
Lung Metagene Model

Method: 89 pts. initial retrospective DNA microarray (genes that predict recurrence in early NSCLC) on long term survivors. Blinded validation in previously treated pts on trials.

Results: Accuracy: 79% PPV: 79% NPV: 80%

<table>
<thead>
<tr>
<th>Stg-I</th>
<th>RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>93%</td>
</tr>
<tr>
<td>intern</td>
<td>70%</td>
</tr>
<tr>
<td>high</td>
<td><10%</td>
</tr>
</tbody>
</table>

SH Harpole et al., PASCO 2006, Abstr 7028
Genomics and prognosis of early NSCLC:
Lung Metagene Model

CALGB 30506:
(ongoing)
Prospective evaluation of risk factors in early stage NSCLC, and adjuvant chemotherapy.

DH Harpole et al., PASCO 2006, Abstr 7026

TNM* Staging of NSCLC (cont)³

<table>
<thead>
<tr>
<th>Stage IIIA</th>
<th>T1-3</th>
<th>N2</th>
<th>M0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>N1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*T = primary tumor; N = nodal involvement; M = distant metastasis.

INTERMEDIATE STAGE

NEO-ADJUVANT CHEMOTHERAPY

resectable disease

Surgery alone vs. pre-Op. Carbo/paclit. in Stage-IB & **non-N2** -IIIA NSCLC: S9900

RESECTABLE

Population:
- Stage-IB (63%)
- Stage-IIA/B (33%)
- Stage-III A (4%)

Primary endpoint: 30% improvement in MS (3.6 yrs) over surgery alone (2.7 yrs).

Surgery: at least lobectomy with mediastinal LN sampling.

ASCO 2005 LBA # 7012. C Pisters et al.

Surgery alone vs. pre-Op. Carbo/paclit. in Stage-IB & **non-N2** -IIIA NSCLC: S9900

³ 700 pts., randomized 1:1.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>OS</th>
<th>1-yS</th>
<th>2-yS</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacl-225</td>
<td>42m</td>
<td>82%</td>
<td>68%</td>
<td>0.88</td>
</tr>
<tr>
<td>Carb AUC6</td>
<td>q 3w x 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

37m 79% 64% 1.0

ASCO 2005 LBA # 7012. C Pisters et al.
Resectable non-N2 NSCLC:

Consensus:
1. Resectable non-N2 disease, should be offered **definite R0 intervention**, with at least 4 regional LN's sampling.
2. Borderline resectable non-N2 disease, can be treated with **induction therapy** (Carbo or Cis-based doublet for 2-3 cycles) /b. re-evaluation for resection.

NEO-ADJUVANT CHEMO/RADIATION THERAPY

Resectable disease

ROLE OF SURGERY?!

Phase-III CHRT vs. CHRT f/b Surgery in Stage-IIIA (pN2) NSCLC: RTOG 9309

<table>
<thead>
<tr>
<th>RESECTABLE</th>
<th>Primary endpoint: PFS, OS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>396 pts.</td>
</tr>
<tr>
<td>PEx2+TRT-45Gy</td>
<td>12.8 22.4 23.6</td>
</tr>
<tr>
<td>Surg >> PEx2</td>
<td>m % m</td>
</tr>
<tr>
<td>PEx4+TRT-61Gy</td>
<td>10.5 11.1 22.2</td>
</tr>
<tr>
<td>pValue</td>
<td>0.017 0.008 0.24</td>
</tr>
</tbody>
</table>

ASCO 2005, Abstract #7014; Albain K et al.

Conclusions:
1. Significant improvement in **PFS** but **not OS** when surgery follows CHRT in Stage-IIIA (pN2)
2. Trend for better 5-y Survival with **trimodality** therapy.

ROLE OF SURGERY??

** MANAGEMENT OF LOCALLY ADVANCED LUNG CANCER:**

unresectable disease

TNM* Staging of NSCLC

(cont)³

<table>
<thead>
<tr>
<th>Stage IIIB</th>
<th>T4 Any T</th>
<th>Any N N3</th>
<th>M0 M0</th>
</tr>
</thead>
</table>

³ = primary tumor; N = nodal involvement; M = distant metastasis

SWOG 9504
Stage-IIIB

UNRESECTABLE

83 Prs. Stage-IIIB T4 & N3

INDUCTION
Cis 50mg/m² d1,8,29,36
VP-16 50mg/m² d1-5; 29-33
XRT 61 GY, from d1

CONSOLIDATION
TXT 75-100mg/m²
q 21days x 3 cycles

Results: MS-Mo 1-Y 2-Y 3-Y
27 76% 54% 40%

D Gandara et al, ASCO 2001; Abs.#1255

SWOG 9504

2005

Stage IIIB T4N3

5-y MS 26mo
1-Y S 76%
2-Y S 54%
3-Y S 40%
5-Y S 29%

Gandara D et al, ASCO ‘05, Abs #7659

ADVANCED DISEASE

TNM* Staging of NSCLC (cont)³

Stage IV | Any T | Any N | M1

* T = primary tumor; N = nodal involvement; M = distant metastasis

Goals in Advanced NSCLC ⁴

• Extend Survival
 1st-, 2nd-, and 3rd-line options

• Improve Quality of Life
 Palliate disease-related symptoms
 Manage treatment-related side effects
 Support patient and family turmoil

Provide the Longest Duration of Quality of Life!!!

Agents with “Activity” in Advanced NSCLC⁵,⁶

<table>
<thead>
<tr>
<th>Older</th>
<th>Newer</th>
<th>Newest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatin</td>
<td>Carboplatin</td>
<td>Pemetrexed**</td>
</tr>
<tr>
<td>Etoposide</td>
<td>Docetaxel</td>
<td>Erlotinib</td>
</tr>
<tr>
<td>Ifosfamide</td>
<td>Irinotecan</td>
<td>Gefitinib</td>
</tr>
<tr>
<td>Mitomycin-C</td>
<td>Gemcitabine*</td>
<td>Bevacizumab</td>
</tr>
<tr>
<td>Vinblastine</td>
<td>Paclitaxel</td>
<td></td>
</tr>
<tr>
<td>Vinorelbin</td>
<td>Topotecan</td>
<td></td>
</tr>
</tbody>
</table>

Note: Not all these agents are approved by the FDA for the treatment of NSCLC.
*Gemcitabine/cisplatin is approved for 1st-line NSCLC
**Pemetrexed is approved for 2nd-line treatment of NSCLC

⁶ Seminars in Oncology. 2006
PFIZER A8501001
1st line induction chemotherapy +/- dendritic cell vaccine in advanced NSCLC.

Eligibility: Stage IIIb (with pleural effusion) and Stage IV NSCLC.

Design:
Arm-A: Carboplatin AUC-6/Paclitaxel 200 mg/m² on d1, every 21 days, x 6cycles, plus DNA recombinant dendritic cell vaccine.
Arm-B: Carboplatin AUC-6/Paclitaxel 200 mg/m² on d1, every 21 days, x 6cycles.

Comparative table:

<table>
<thead>
<tr>
<th>Author</th>
<th>RR %</th>
<th>TTP mo</th>
<th>MS mo</th>
<th>1-yS %</th>
<th>2-yS %</th>
<th>Carbo/Pacl</th>
<th>Carbi/Pacl/Be vacizumab</th>
<th>Carbo/Gem</th>
<th>Cis/Taxotere</th>
<th>Gem/Paclit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belani</td>
<td></td>
</tr>
<tr>
<td>Sandler</td>
<td>27</td>
<td>6.4</td>
<td>12.5</td>
<td>--</td>
<td>--</td>
<td>34</td>
<td>5.2</td>
<td>7.6</td>
<td>31.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Tritt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>--</td>
<td>11.3</td>
<td>--</td>
<td>21</td>
</tr>
<tr>
<td>Fossella</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>4.79</td>
<td>8.4</td>
<td>33.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Advanced NSCLC:

Significant improvement in MS of @ 8 weeks, with NO negative financial impact or on QOL.

Stephens RJ: The Big Lung Trial Cisplatin-based chemo vs. BSC only in NSCLC. PASCO 21: 291, 2002. Abs. #1161

Cisplatin-based chemo in the elderly:

MILES-2P

<table>
<thead>
<tr>
<th>169 pts ≥ 70 y/o ECOG 0-1</th>
<th>Toxicity</th>
<th>ORR</th>
<th>DFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>anemia 5%</td>
<td>thromb 10%</td>
<td>cardiac 10%</td>
<td>renal 7%</td>
</tr>
<tr>
<td>Cispl-60 d1 Gem-1000 d1.8 q21d x 6 cycles</td>
<td>43%</td>
<td>25 wks.</td>
<td>44 wks.</td>
<td></td>
</tr>
<tr>
<td>Cispl-40 d1 Vinor-25 d1.8 q21d x 6 cycles</td>
<td>36%</td>
<td>21 wks.</td>
<td>33 wks.</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: Cis-60/Gem is safe and active in fit elderly patients.

TARGETED THERAPY
Angiogenesis

Tumor Growth

Anti-apoptosis

Gene Activation

MAPK

ERK

jnk

ras

Rho-B MEK

sek

PI3-K Akt

mTOR

G2

S

M

G1

Ininsensitivity to anti-growth signals

Self sufficiency in growth signals

Tissue invasion

and metastasis

Insensitivity to anti-growth signals

Angiogenesis

EGFR-Targeted Approaches

- **cetuximab (C225)**
- **erlotinib (Tarciva®)**
- **gefitinib (Iressa®)**

Adapted from Noonberg and Benz. Drugs. 2000;59:753.

Prospective erlotinib trial in advanced NSCLC with EGFR-mut.:

SLCG

Bock, EGFR-mut predicts response (60-90%) and long TTP (12-21 mo) to the tk-inhibitors erlotinib & gefitinib.

Population: 127 (15.1%);1047 pts. EGFR-mut (+) (exon 19 & 21)

- **M-age:** 68
- **Stg-IV:** 90%
- **Female/male:** 65%
- **AdenoCa:** 75%

Eligibility & treatment:

- **Eligibility:** Stg IIIb/IV, EGFR-mut (+), PS 0-2, Prior Rx: 60
- **Treatment:** Rx naïve: 67, Erlotinib 150 mg/day PO

L. Paz-Ares et al., PASCO 2006 Abstr7020

Results:

Prospective erlotinib trial in advanced NSCLC with EGFR-mut.:

SLCG

<table>
<thead>
<tr>
<th></th>
<th>MS (mo)</th>
<th>1-y S (%)</th>
<th>CR (%)</th>
<th>RR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon-19-mut</td>
<td>33</td>
<td>82</td>
<td>20</td>
<td>95</td>
</tr>
<tr>
<td>Exon-21-mut</td>
<td></td>
<td></td>
<td>5.5</td>
<td>68</td>
</tr>
</tbody>
</table>

Response by site:

<table>
<thead>
<tr>
<th>POOR:</th>
<th>GOOD:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>CNS</td>
</tr>
<tr>
<td>Lymph nodes</td>
<td>Liver</td>
</tr>
<tr>
<td>Bone</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions:

Prospective predictors of response to tk-inhibitors:

a. EGFR-mut (exon-19 > 21)…p=0.038
b. Non-smoking history……… p=0.043
c. Female gender…………….. p=0.203

L. Paz-Ares et al., PASCO 2006 Abstr7020;
CHEMO-TARGETED THERAPY IN ADVANCED NSCLC

Targeting VEGF

Bevacizumab
rHu-MoAb to VEGF-A

Bevacizumab plus chemotherapy has provided a survival advantage to patients with metastatic colorectal carcinoma.

VEGF as a target for the treatment of Cancer:
- Tumors require new blood vessel growth
- A number of pro-(PAF) and anti-angiogenic factors (AAF) discovered over the past years.
- VEGF is critical angiogenic factor for new blood vessel growth
- VEGF overexpression is associated with disease progression and death

VEGF as a target for the treatment of Cancer:
- Bevacizumab (AvastinR; Anti-VEGF Ab)
 - precludes VEGF from binding to VEGFR
 - Activity as single agent and in combination with cytotoxic agents
 - Initial clinical trials disappointing.
 - Recent successful trials:
 - ASCO '03: CRC.
 - ECOG 4599 '05: NSCLC

VEGF as a target for the treatment of Cancer:

Endothelial Cell

Anti-VEGF MoAb (AvastinR)

VEGF

ATP

VEGFR-1

VEGFR-2

Small Molecules (tki)

Anti-VEGF

BLOOD CLOT

Blood vessel obstruction

APOPTOSIS

? BLOCKS CHEMO DELIVERY
VEGF as a target for the treatment of Cancer:

![Diagram showing Vasculature and Pressure](image)

Jain et al, Nature Medicine, 2004

Objective
- 30% improved MS (8.0>10.4 mo.)

Eligibility
- Stage-IIIB/IV
- Non-surgical
- ECOG ≤1

Randomize
- 1:1

Carbo/Paclit +/- Bevacizumab
- (Adenocarcinomas)

- **Carbo-6/Taxol-200, q21 days, x 6 cycles**
- **Carbo-6/Taxol-200 + Bevaciz 15 mg/kg, q 21 d, x 6 cycles f/b**
- Bevacizumab until DP

Survival by Treatment

![Graph showing Survival by Treatment](image)

Carbo/paclitaxel +/- bevacizumab: unplanned subset survival analysis by gender

<table>
<thead>
<tr>
<th></th>
<th>PC</th>
<th>PCB</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>10.3 mo</td>
<td>12.3 mo</td>
<td>0.003</td>
</tr>
<tr>
<td>Males</td>
<td>8.7 mo</td>
<td>11.7 mo</td>
<td>0.001</td>
</tr>
<tr>
<td>Females</td>
<td>13.1 mo</td>
<td>13.3 mo</td>
<td>0.87</td>
</tr>
</tbody>
</table>

ORR
- **23.6%**
- **38.5%**

TTP
- 6.8 mo

JR Brahmer et al., PASCO 2006, Abstr 7036.
Carbo/paclitaxel +/- bevacizumab: unplanned subset survival analysis by gender
ECOG 4599

<table>
<thead>
<tr>
<th></th>
<th>HTN %</th>
<th>Constip %</th>
<th>Abd Pain %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>4.2</td>
<td>1.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Female</td>
<td>9.9</td>
<td>4.7</td>
<td>5.2</td>
</tr>
<tr>
<td>p Value</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
</tr>
</tbody>
</table>

JR Brahmer et al., PASCO 2006, Abstr 7836;

Consensus:
1. Female patients **should be offered** bevacizumab-based Carbo/Paclitaxel combinations, until further gender data is available

Carbo/paclitaxel/bevacizumab
female patients

Retinoids:
mechanism of action

Retinoids:
mechanism of action

Retinoids:
RxR-β tumor expression and survival in resected NSCLC

<table>
<thead>
<tr>
<th></th>
<th>Pts #</th>
<th>5-y S</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (>12.9)</td>
<td>27</td>
<td>74.1%</td>
</tr>
<tr>
<td>Low (<12.9)</td>
<td>61</td>
<td>34.4%</td>
</tr>
</tbody>
</table>

Bexarotene:
clinical experience
Concurrent bexarotene and chemotherapy in advanced NSCLC:

Design: Plat- Based CH + bexarotene.

<table>
<thead>
<tr>
<th>Phase-I/II</th>
<th>OR (%)</th>
<th>MS (mo)</th>
<th>1-y S (%)</th>
<th>2-y S (%)</th>
<th>3-y S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1069-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cis/Vin+Bexarotene (100/30-15 400mg/m2/d)</td>
<td>25</td>
<td>14</td>
<td>61</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>All dose groups</td>
<td>--</td>
<td>11.7</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>TAX326 (Cis/Vin)</td>
<td>--</td>
<td>10.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

ECOG 1594: survival curve

Survival by Treatment Group

![Survival Graph]

Concurrent & sequential bexarotene and chemo. in advanced NSCLC:

Design: Plat- Based CH + vs. f/b. bexarotene.

<table>
<thead>
<tr>
<th>Phase-II</th>
<th>OR (%)</th>
<th>TTP (days)</th>
<th>1-y S (%)</th>
<th>MS (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carb-6/Tax-100/bexarotene-400 (PR)</td>
<td>58</td>
<td>166.2</td>
<td>45</td>
<td>(11.7)</td>
</tr>
<tr>
<td>C S</td>
<td>162</td>
<td>171</td>
<td>50</td>
<td>43</td>
</tr>
<tr>
<td>C S</td>
<td>12.6</td>
<td>10.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11 pts are still alive 407 to 1036 days from registration on the trial.

LOOKING INTO THE CRISTAL BALL:

EMERGING OF A NEW PARADIGM IN THE TREATMENT OF LUNG CANCER.

OLD THERAPEUTIC PARADIGM:
- Tumor Anti-proliferative drugs
- Maximal cytoreduction > CR(PR)/SD/PD (CT-scan)*
- Eradication of malignant cell clone/Cure
- Severe nonspecific toxicity

NEW THERAPEUTIC PARADIGM:
- Modulators of tumor cell growth (“cytostasis”)
- Maximal functionality > TTP/MS/QOL (PET)*
- Delay disease progression/tumor proliferation
- Less nonspecific toxicity

CANCER AS A CHRONIC DISEASE
PROTRACTED USE OF THERAPY
CHRONIC TOXICITY

RODOLFO TO START INFECTION ON FEB 29TH, 11:40 AM AFTER NOTICING THE DISCHARGE SUMMARY

DISCHARGE SUMMARY
DISCHARGE SUM.....
2006 TREATMENT OF CANCER:
CONCLUSIONS:

HOPE