LUNG CANCER: 2006 update

Rodolfo E. Bordoni, MD

Chairman, Research & Therapeutics, Leader, Lung Cancer Program, Georgia Cancer Specialists; Chairman, Professional Education, Georgia Cancer Foundation; Chairman, Department of Medicine, WellStar Kennestone Hospital.

Lung Cancer in the U.	S. in 2005:
Incidence and Mo	rtality ¹
New cases: 172,570	Rank
93,010 males	#2
79,560 females	#2
Annual deaths: 163,510	
90,490 males	#1
73,020 females	#1
Risk for developing lung cancer 1:13 males 1:18 females	
• 5-year survival rate (all stages):	
1 Cancer Facts and Figures 2005. Atlanta: American Cancer Society; 2005:1-12.	

TNM [*] Staging of NSCLC ³					
Stage IA	T1	N0	M0		
Stage IB	T2	N0	M0		
Stage IIA	T1	N1	M0		
Stage IIB	T2 T3	N1 N0	M0 M0	ON.	

2000:18:106-115

T	NM [*] S	taging (cont)	of NSC) ³	CLC
Stage IIIA	T1-3 T3	N2 N1	M0 M0	
Stage IIIB	T4 Any T	Any N N3	M0 M0	<u> </u>
Stage IV	Any T	Any N	M1	
= primary tumor; N = Seminars in Surgical Oncolo		nt; M = distant met	astasis	·

IASLC staging system project:

- 1997 Lung Cancer Staging System: 1. T3 N0 M0 belongs to Stage- IIB (instead of-IIIA) 2. Malignant pericardial effusion added to T4
 - 3. Satellite tumors within same lobe added to T4
 - 4. Ipsilateral distant metastasis classified as M1

5-year Survival by clinical stage:

IA	IB	IIA	IIB	IIIA	IIIB	IV
72.1	49.9	48.7	40.6	35.8	28.0	20.8
%	%	%	%	%	%	%

Based on these, the new staging system most likely will merge current TNM stages and will create new substages based on a large worldwide database.

EGFR MUTATION: NEJM,2004;350:2129 Lynch T et al.

Of 275 pts treated with gefitinib; 25 reached PR.

□ 9:25 PR pts. *(all AdenoCa & BAC),* with a MS > 18m., were evaluated for EGFR gene mutations in

the entire gene coding region.

	<u> </u>	0	
	Respo	onders	Non-
	Cancer Tissue	Normal Tissue	Responders
Mutation	8:9 (88.9%)	P<0.001	0:7
Best resp	onse: women	non-smokers	

Best response: women, non-smoker BAC histology: 50%!!

Mutations were, heterozygous, somatic, either small, in frame deletions or amino acid substitution clustered around the ATPbinding pocket of the TK domain, and located in exons 19 and 21.

EGFR MUTATION-I (cont'd): NEJM,2004;350:2129 Lynch T et al.

Conclusions:

□Screening for <u>specific EGFR mutations</u> may identify sensitive patients to gefitinib.

□Structural analysis of the mutant receptors may help understand the mechanism of EGFR activation and help the <u>design of</u> <u>more specific inhibitors</u> of the mutant receptors.

DNA repair genes:

PROGNOSTIC FACTORS IN LUNG CANCER: ERCC1 & RRM1

ASCO '03. Abs # 2590. R Rosell et al.

ERCC1 (DNA repair) & RRM1 expression predicts response to platinum and OS in advanced disease.

81 pts, Stage-IIIB "wet" or –IV, Rx'd with Cis/Gem					
	ТТР	MS	Ideal Rx		
Low ERCC1	8.3mo	13.7mo	Cis/Gem		
High ERCC1	5.1	3.6	Other Rx		
Low RRM1	8.3	N/R	Cis/Gem		
High RRM1	2.7	6.8	Other Rx		

ERCC1 mRNA-based, Ph-III-r trial in Stage-IV NSCLC:

192 pts. available for analysis

		N A-base ge-IV N	d , Ph-III SCLC:
ERCC1	?	Low	High
	Α	B1	B2
	Cis/Doc	Cis/Doc	Gem/Doc
ORR	40.4%	56.6%	37.7%
A1-Low	A2-High		
Cis/Doc	Cis/Doc	p=0	.08
47.3%	26.1%		I

ERCC1 mRNA-based, Ph-III-r trial in Stage-IV NSCLC:

Conclusions:

- 1. <u>Low ERCC1 expressers</u>: better than average response to Platinum-based therapy (doc/cis) [56.6%].
- High ERCC1 expressers: trend to better response to a non-Platinum regimen (doc/gem).
 [ORR 37.7)vs. 26.1 %; MS 9.5)vs. 8.0 mo.]

ASCO 2005, Abstract #7002; Rosell R et al.,

SMOKING CESSATION: Chantix^R (varenicline tartrate) daily for 12 weeks + 12

extra weeks for pts who quit smoking to increase likelihood of long-term smoking cessation.

<u>COMMENT</u>: Chantix^R (*Pfizer*) was approved by the FDA in 6/06 to help smokers stop smoking (*eases withdrawal symptoms and blocks nicotine effects if pts resume smoking*) based on six clinical trials (3,659 pts, average 21 cigarettes/day x 25 years). Chantix was superior to placebo in all trials, and superior to Zyban (*bupropion*) in 2:5 placebo-controlled studies. Major adverse effects: NV, HA, flatulence, insomnia, abnormal dreams, and dysgeusia (change in taste perception)

SCREENING: Low dose spiral CT-scan in early diagnosis of LuCa:

Conclusions:

- 1. Effective in early diagnosis
- 2. Potential increase in cure rate
- 3. Very low rate of procedures for benign dz.

National Lung Screening Trial (NLST)

American College of Radiology Imaging Network [ACRIN] Spiral CT-scan <u>vs.</u> CxR <u>http://www.cancer.gov/nlst</u>

CHEMOPREVENTION: SWOG E5597 (NCCN 2006)

Design: double blind, placebo controlled study of selenium yeast, 1tablet/day x4 years <u>vs</u>. placebo, 1 tablet in AM x 4 years.

Eligibility:

- 1. Totally resected Staged IA (pT1N0)
- 2. Free of disease.
- 3. 6 36 months from date of surgical resection
- 4. No prior or current chemo or radiation therapy

5. ECOG PS 0-1

Journal of the National Comprehensive Cancer Network; July 2006

NSCLC: Therapeutic Options by Stage⁴

Stage	Treatment Options	5-Year Survival
IA	Surgery	>70%
IB	Surgery <u>+</u> Adjuvant CT	60%
IIA	Surgery + Adjuvant CT	50%
IIB	Surgery + Adjuvant CT	30-40%
IIIA (N2-) IIIA (N2+)	Surgery + Adjuvant CT CT \pm XRT \pm Surgery	25-40% 10-30%

4 Cancer Principles & Practice of Oncology. Philadelphia: Lippincott Williams & Wilkins; 2001:925-974

Case #1:

MW- initial visit: 11/10/05

62 y/o WF, with recurrent RUL pneumonias between July and October, 2005. Repeat CxR after ATBx therapy showed R hilar mass. Chest CT-scan showed a 4.58 x 4.23 cm RUL pulmonary mass with possible direct extension to the medial pleura, possible R paratracheal and precarinal LN's, a 2.5 x 1.6 cm L adrenal lesion, and a L1 lytic lesion.

Transbronchial Bx of the RUL mass showed **large cell undifferentiated** carcinoma of the lung. Bx of the L1 lesion was reported as benign.

Case #1:

- A whole body PET-scan showed the adrenal mass and the possible bony lesions <u>NOT</u> to be hypermetabolic. Clinical (c)stage IIIA (T2N2M0).
- Therapeutic recommendation upon consultation to the Multidisciplinary Lung Cancer Clinic: "neo-adjuvant combined modality concurrent chemo-radiation therapy *f/b* re-evaluation with intent to resection". Patient was treated with two cycles of cisplatin (60 mg/m2) and etoposide (120 mg/m2/day x3), every 3 weeks with concurrent XRT (50 Gy over 25 treatment fractions) to the tumor and adjacent positive adenopathies and areas of likely sub-clinical involvement.

Case #1:

Interval re-evaluation was planned for after completion of chemoradiation. If the patient was not found a candidate for surgery, she was to continue XRT to a definitive dose up to 65 Gy and consolidation chemotherapy with two cycles of docetaxel 100 mg/m2 every 3 weeks.

Upon completion of chemoradiation, a chest CT-scan was done showing objective response as per table:

	10/31/05	2/14/06
RUL mass	4.58 x 4.23 cm	3.0 x 2.3 cm
L adrenal mass	2.5 x 1.6 cm	2.45 x 1.58 cm

Case #1:

On 4/4/06 the patient underwent a VATS RULobectomy with chest wall resection.

Tumor size	3.5 cm		
Histologic type	Large cell undiff.		
Histologic grade	G4		
Extent of invasion	Visceral/parietal pleura		
Margins	uninvolved		
Venus invasion	No		
Arterial invasion	No		
N1 nodes (station 10-14)	0:1		
N2 nodes (station 1-9)	0:2 Total I		
N3 nodes	0:0 sampl	ed: 3	
Distant metastais	Not examined		

Case #1:

The second week in May the patient developed persistent HA's and weakness. Brain MRI with contrast

showed a single R occipital mass c/w metastasis.

Upon consult with NS the mass was debulked and she received **30 Gy** in 12 treatment fractions to the whole brain, from 5/24 through 6/12/06, plus **temozo-lamide** (*75mg/m2/day*).

Case #1:

On 5/23/06 she was sent for a whole body CT/PET scan for restaging of the LuCa and due to progressive **pain in the R paraspinal area**, at T8-9 level.

A new, abnormal focal area of hypermetabolism was found along the paramedial aspect of the posterior R pleura at T9 level with SUV of 9.1. Bx proved this to be **NSCLC**, **metastatic**.

Case #1: She received **35** Gy delivered in 7 treatment fractions, using IMRT, from 6/21 through 6/29/06. On 7/25/06 a thoracic and lumbar spinal MRI was done due to progressive back pain. It showed metastatic disease to **T10** with **tumor extension into the neural foramina** and chronic compression of L1.

NSCLC: The	erapeutic Options (cont) ⁴	s by Stage
Stage	Treatment Options	5-Year Survival
IIIB (N2-3)	CT/TRT <u>+</u> CT	<10%
IIIB T4N0	CT/TRT + Surgery	<5%
IIIB (with pleural	CT, MTT	<2%
effusion)	CT, MTT	
IV	Palliative Radiation	
	Symptom Management	

4 Cancer Principles & Practice of Oncology. Philadelphia: Lippincott Williams & Wilkins; 2001:925-974.

EARLY STAGE adjuvant therapy

TNM* Staging of NSCLC ³					
Stage IA	T1	N0	M0		
Stage IB	T2	N0	M0		
Stage IIA	T1	N1	M0		
Stage IIB	T2 T3	N1 N0	M0 M0	OH.	

Adjuvant	chemotherapy f NSCLC:	for Stg	g IB
<u>Design</u> : 13% OS			
Median F/U: 34m	0	4-yS	4-yFFS
344 pts. Stage IB(T2N0)	Cb-6/Pacl-200 q 21 days x 4 cycles	71%	61%
Lobectomy 89%	Observation	59%	50%
0	pValue	0.028	0.035

CALGE	2 0623.		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
04		2006	
yS 5-	yDFS	OS	5-yS
		HR: 0.80	60%
%	1.0	1.0	57%
)28 (0.027	0.10	0.32
	yS 5- %	yS 5-yDFS % HR: 0.74 % 1.0 028 0.027	yS 5-yDFS OS % HR: 0.74 HR: 0.80 % 1.0 1.0 028 0.027 0.10

JY Douilla	ANI ard et al., AS		Abstr	#7013
840 pts. Stage IB /II/IIIA	$ \begin{array}{c} R \\ A \\ N \\ D \\ O \end{array} $ $ \begin{array}{c} \sim \\ \hline \\ \hline \\ O \\ \hline \\ O \end{array} $ $ \begin{array}{c} \sim \\ \hline \\ \hline \\ O \\ \hline \\ O \\ \end{array} $ $ \begin{array}{c} \sim \\ \hline \\ O \\ O \\ \end{array} $ $ \begin{array}{c} \sim \\ \hline \\ O \\ O \\ \end{array} $ $ \begin{array}{c} \sim \\ \hline \\ O \\ O \\ O \\ \end{array} $ $ \begin{array}{c} \sim \\ \hline \\ O \\ O \\ O \\ O \\ \end{array} $ $ \begin{array}{c} \sim \\ \hline \\ O \\ O$	s x 4 cycles	7- y 8 45% 37%	-
5-y S.	Stg-IB	Stg-II		Stg-III
Treatment	62%	52%		42%
Observation	63%	39%		26%

Adjuvant chemotherapy in early stage NSCLC :

<u>Consensus:</u>

- 1. Chemotherapy of choice: **cis-based** (Vinorelbine, VP-16, Vinca alkaloids)
- 2. Patient eligibility: Stage II & III
- 3. Stage IB:
 - a. On **clinical trial**, if available
 - b. High-risk patients (angiolymphatic invasion, high histologic grade, high nuclear grade)
- 4. Age <u>NOT</u> a limiting factor

	JBR.10) (Cis/VNR)	
213 pts.	<65	<u>>65</u>	>75	
OS HR	0.77 <i>p</i> =0.084	0.61 p=0.04	1.95 <i>p</i> =0.02	
SqCellCa	32%	49% p=0.001		s
PS 0-1	53% p=0.01	41%		Sub-set Analysis
Dose Int.				Anal
1. VNR	13.2	9.9 p=0.0004		ysis
2. Cis	18.0	14.1 p=0.001		l"
Toxicity	SA	ME		

Genomics and prognosis of early NSCLC: Lung Metagene Model

CALGB 30506:

(ongoing) Prospective evaluation of risk factors in early stage NSCLC, and adjuvant chemotherapy.

DH Harpole et al., PASCO 2006, Abstr 7026

INTERMEDIATE STAGE

Resectable non-N2 NSCLC:

Consensus:

- 1. Resectable non-N2 disease, should be offered definite R0 intervention, with at least 4 regional LN's sampling.
- 2. Borderline resectable non-N2 disease, can be treated with induction therapy (*Carbo or Cis-based doublet for 2-3 cycles*) <u>f/b.</u> re-evaluation for resection.

NEO-ADJUVANT CHEMO/RADIATION THERAPY

resectable disease ROLE OF SURGERY?!

	Phase-III CHRT vs. n Stage-IIIA (pN2)			0 2
	RESEC	TABLE		
<u>P</u>	rimary endpoint: PI	FS, OS	•	
	96 pts.	PFS	5-yPFS	OS
RA	PEx2+TRT-45Gy	12.8	22.4	23.6
N D	>> Surg >> PEx2	m	%	m
0	PEx4+TRT-61Gy	10.5	11.1	22.2
	pValue	<i>0.017</i>	0.008	0.24
AS	CO 2005, Abstract #7014; Albain H	Ketal.		

Phase-III CHRT vs. CHRT f/b Surgery in Stage-IIIA (pN2) NSCLC: *RTOG 9309*

Conclusions:

- Significant improvement in PFS but <u>not</u> OS when surgery follows CHRT in Stage-IIIA (pN2)
- 2. Trend for better 5-y Survival with **trimodality** therapy.

ROLE OF SURGERY??

ASCO 2005, Abstract #7014; Albain K et al.

	SWO	G 9	504		
	Stage	e-III	IB		
[UNRESE	СТА	BLE		
83 Pts. Stage-II	[IB T4 &]	N <u>3</u>			
INDUCTI	ON	CO	ONSO	LIDA	ΓΙΟΝ
Cis 50mg/m2 d1,8 VP-16 50mg/m2 d XRT 61 Gy, from	11-5; 29-33			75-100mg 1ys x 3 cy	,
Results:	MS-M	0	1-Y	2-Y	3-Y
	27		76%	54%	40%

		_
	2005	
5-y MS	26mo	T4N0-1: 32 T4N2: 26 N3: 16
1-Y S	76%	10. 10
2-Y S	54%	
3-Y S	40%	
5-Y S	(29%)	T4N0-1: 29 T4N2: 37 N3: 20

Goals in Advanced NSCLC⁴

- Extend Survival 1st-, 2nd-, and 3rd-line options
- Improve Quality of Life Palliate disease-related symptoms Manage treatment-related side effects Support patient and family turmoil

Provide the Longest Duration of Quality of Life!!!

phia: Lippincott Williams & Wilkins: 2001:925-97

Agents with	"Activity" NSCLC ^{5,6}	in Advance
Older	Newer	Newest
Cisplatin	Carboplatin	Pemetrexed**
Etoposide	Docetaxel	Erlotinib
Ifosfamide	Irinotecan	Gefitinib
Mitomycin-C	Gemcitabine*	Bevacizumah
Vinblastine	Paclitaxel	
Vindesine	Topotecan	
	Vinorelbine	
Note: Not all these agents are a *Gemcitabine/cisplatin is approv **Pemetrexed is approved for 2		tment of NSCLC.

Think research...!!!

PFIZER A8501001

1st line induction chemotherapy +/- dendritic cell vaccine in advanced NSCLC.

<u>Eligibility</u>: Stage IIIB (with pleural effusion) and Stage IV NSCLC.

Design:

<u>Arm-A</u>: Carboplatin AUC-6/Paclitaxel 200 mg/m2 on d1, every 21 days, x 6cycles, plus <u>DNA recombinant</u> dendritic cell vaccine.

<u>Arm-B</u>: Carboplatin AUC-6/Paclitaxel 200 mg/m2 on d1, every 21 days, x 6cycles.

Advanced NSCLC:

Significant improvement in MS of @ 8 weeks, with <u>NO</u> negative financial impact or on QOL.

Stephens RJ: **The Big Lung Trial**: Cisplatin-based chemo vs. BSC only in NSCLC. PASCO 21: 291, 2002. Abs. #1161

1-yS %	2-yS	
/0	2 yo	Author
		Belani
		Sandler
31.0	8.0	Tritt
	21	Fossella
33.0	8.0	Tritt

169 pts <u>></u> 70 y/o ECOG 0-1	Toxicity	ORR	DFS	OS
Cisplat-60 d1 Gem-1000 d1,8 q21d x 6 cycles	anemia 5% thromb 10% cardiac 10% renal 7%	43 %	25 wks.	44 wks.
Cisplat-40 d1 Vinor-25 d1,8 q21d x 6 cycles	death 2pts. (sepsis; cardiac)	36 %	21 wks.	33 wks.

Prospective NSC <u>Results</u> :	LC w	ith	ib trial EGFR <i>CG</i>		nced
	MS (mo)		1-y S (%)	CR (%)	RR (%)
Exon-19-mut	(22	_	82)	20	95
Exon-21-mut	<u>\</u>		02	5.5	68
Response by site	<u>e</u> :				
POOR:	POOR:		GOOD:		
Lung			CNS		
Lymph no	des		Live	r	
			Bon	e	

Prospective erlotinib trial in advanced NSCLC with EGFR-mut.: SLCG
Conclusions:
Prospective predictors of response to tk- inhibitors:
a. EGFR-mut (exon-19 > 21)p=0.038
b. Non-smoking history p=0.043
c. Female gender p=0.203
L Paz-Ares et al., PASCO 2006 Abstr7020;

CHEMO-TARGETED THERAPY IN ADVANCED NSCLC

Targeting VEGF

Bevacizumab rHu-MoAb to VEGF-A

Bevacizumab plus chemotherapy has provided a survival advantage to patients with metastatic **colorectal carcinoma**.

VEGF as a target for the tratment of Cancer:

Tumors require new blood vessel growth

- ♦A number of pro-(PAF) and antiangiogenic factors (AAF) discovered over the past years.
- VEGF is critical angiogenic factor for new blood vessel growth
- VEGF overexpression is associated with disease progression and death

VEGF as a target for the tratment of Cancer:

- Bevacizumab (Avastin^R; Anti-VEGF Ab) precludes VEGF from binding to VEGFR
- Activity as single agent and in combination with cytotoxic agents
- * Initial clinical trials disappointing.
- Recent successful trials: ASCO '03: CRC. ECOG 4599 '05: NSCLC

842 (650= 72.2% dead)	RR	PFS	MS
12.270 dead)	%	mo	mo
Carbo/ Faxol	10	4.5	10.2
Carbo/ Faxol/	27	6.4	(12.5)
Bevaciz.			
Value	0.0001	0.0001	0.0075

subse	et si	urvival	analysis	by	gender	
		ECC	G 4599)		
850 pts.		PC	РСВ		pValue	
MS	10).3 mo	(12.3mo		0.003	
Males	8	.7 mo	11.7 mo		0.001	
Females	13	3.1 mo 13.3mo		10	0.87	
		Males		Females		
PFS		6.3 mo		6.2 mo		
ORR		23.	5%		38.5%	
ТТР		6.8	mo		6.8 mo	

subset s		nalysis by G 4599	gender
		• PBC Arm	
	HTN %	Constip %	Abd Pain %
Male	4.2	1.4	0.9
Female	9.9	4.7	5.2
pValue	0.02	0.05	0.01

Retinoids:RxR-β tumor expression and survival in
resected NSCLCPts #5-y S

	Pts #	5-y S
High (>12.9)	27	74.1%
Low (<12.9)	61	34.4%
		<i>p</i> =.0005
Brebender et al. Clin Cancer	r Res. 8:438-443; 2002.	

<i>Concurrent</i> bexarotene and chemotherapy in advanced NSCLC:							
<u>Design</u> : Plat- Based CH + bexarotene.							
Phase-I/II (43 pts.)	OR %	MS mo	1-y S %	2-y S %	3-у S %		
L1069-18							
Cis/Vin+Bexarotene	25	14) 61	32	19		
(100/30-15 400mg/m2/d)							
All dose groups		11.7					
TAX326 (Cis/Vin)		10.1					
FR Khuri et al. J Clin Oncol; 19:2626,2	2001						

Concurrent & sequential bexarotene and chemo. in advanced NSCLC:

Design: Plat- Based CH + vs. f/b. bexarotene.

Phase-II (56 pts.)	OR (%)	T] (da		1-y S (%)		MS (mo)	
Carb-6/Tax-100/ bexarotene-400	58 (PR)	16 C 162	5 6.2 8 171	4 C 50	5 8 43	(11.7) C S 12.6 10.8	
11 pts are still alive 407 to Bordoni RE et al. Pro ASCO 200		ys fro	m reg	istrati	on on	the tri	al.

